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We discuss how large-eddy simulation (LES) can be properly employed to predict
the statistics of the resolved velocity fluctuations in shear turbulence. To this purpose
an a posteriori comparison of LES data against filtered direct numerical simulation
(DNS) is used to establish the necessary conditions that the filter scale LF must
satisfy to achieve the preservation of the statistical properties of the resolved field.
In this context, by exploiting the physical role of the shear scale LS , the Kármán–
Howarth equation allows for the assessment of LES data in terms of scale-by-scale
energy production, energy transfer and subgrid energy fluxes. Even higher-order
statistical properties of the resolved scales such as the probability density function of
longitudinal velocity increments are well reproduced, provided the relative position of
the filter scale with respect to the shear scale is properly selected. We consider here
the homogeneous shear flow as the simplest non-trivial flow which fully retains the
basic mechanism of turbulent kinetic energy production typical of any shear flow,
with the advantage that spatial homogeneity implies a well-defined value of the shear
scale while numerical difficulties related to resolution requirements in the near wall
region are avoided.

1. Introduction
Large-eddy simulation (LES) is a challenging technique for the numerical analysis

of turbulent flows in simple and complex geometries (Moin 2002). The idea is to
resolve explicitly the non-isotropic and non-homogeneous dynamics of the large
scales while accounting for the small scales by a suitable approximation. For reviews
see Lesieur & Metais (1996), Meneveau & Katz (2000) and Pope (2000). The original
idea was essentially inspired by Kolmogorov view of turbulence (see e.g. Frisch 1995).
According to Kolmogorov (1941), the statistical properties of turbulent flows are
universal at small scales, regardless of the specific energy forcing mechanism. In this
framework, universality means that, for fixed geometry, the statistics of the small-
scale fluctuations depend on the Reynolds number Re as the only relevant parameter.
In the early attempts, this concept was instrumental in approximating inertial-range
effects by defining in a suitable way an eddy viscosity (see e.g. Smagorinsky 1963; Lilly
1967). Despite a number of successive proposals, eddy viscosity is still an important
tool for numerical simulations in many applications (see e.g. Moin & Apte 2006).

When viewed rigorously, however, small-scale universality is still an open question.
Also, the technique based on SO(3) decomposition has been extensively applied to
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show that the isotropic fluctuations dominate the small-scale dynamics (Biferale &
Procaccia 2005), although large-scale fluctuations are strongly anisotropic. These
results concern the effect of the shear as a small perturbation acting on an otherwise
isotropic flow.

However, in most applications, the shear is sufficiently strong to invalidate
perturbative approaches. In such conditions, persistence of anisotropy is often
observed, either in experiments – for turbulent boundary layers see Saddoughi &
Veeravalli (1994); Kurien & Sreenivasan (2002), for free shear flows see Shen &
Warhaft (2000); Warhaft & Shen (2002) – or in numerical simulations Spalart (1988);
Antonia, Djenidi & Spalart (1994); Pumir & Shraiman (1994). This behaviour is
typical of the close proximity of a solid wall as discussed in Pope (2004) and
Langford & Moser (1999). See also the discussion reported in Durbin & Speziale
(1997). In fact, the interaction between a solid wall and the turbulence results in
strongly anisotropic turbulent kinetic energy production which affects most of the
turbulent eddies. Hence the range of scales where isotropization might occur is limited.
In this context, the concept of the shear scale originally proposed by Corrsin (1958)
has been illuminating. The shear scale LS ideally separates the production-dominated
scales from those where inertial transfer takes over. The exact scale-by-scale energy
budget was performed in Casciola et al. (2003) and Marati, Casciola & Piva (2004)
starting from DNS data of a homogeneous shear flow and of a turbulent channel
flow, respectively. Successively, the position of the shear scale has been found crucial
for small-scale isotropy recovery under intense shear (Casciola et al. 2005). As we will
see, this kind of reasoning is important for LES where small-scale velocity fluctuations
are filtered out at some scale LF with the overall idea maintaining their dynamical
effects on the large scales.

In fact, LES is affected by a systematic error owing to the replacement of the
small-scale dynamics with the subgrid model and by a numerical error due to the
finite accuracy of the solution of the modelled equations on a grid of size ∆. The sen-
sitivity of the results to these two sources of error has been studied by Klein (2005)
and Freitag & Klein (2006) in the context of implicit filtering. The same issue was
addressed by Guerts & Frohlich (2002) and Meyers, Guerts & Baelmans (2003) where
modelling and numerical errors were parameterized in terms of subgrid activity –
ratio of turbulent to total dissipation rate – and subgrid resolution LF /∆. Apart from
this kind of error which is intrinsic to the methodology, LES calculations depend on
the choice of the artificial parameter LF (see e.g. Baggett, Jimenez & Kravshenko
1997; Jimenez & Moser 2000; and Pope 2004). Here, we attempt to assess the role
of the coarse-graining scale LF in a flow with a given shear scale LS . Concerning the
subgrid model, we adopt deconvolution methods which have received a great deal of
attention lately (Stolz & Adams 1999; Stolz, Adams & Kleiser 2001). See also Guerts
(1997) Domaradsky & Saiki (1997), Domaraksy & Loh (1999) and Guerts & Holm
(2003) for other related approaches, or the contributions by Mathew et al. (2003, 2006)
which propose to evolve the deconvolved field directly. In deconvolution methods,
the ADM (Stolz & Adams 1999) in our case, the essential part of the subgrid stress,
the so-called resolved stresses (Carati, Winckelmans & Jeanmart 2001), is estimated
by reconstructing the fine-grained field via an approximate inversion of the filtering
operator whereas the contributions of the unresolved stresses are modelled via a
purely dissipative term, i.e. the relaxation term.

We consider here the simplest case of anisotropic turbulence, namely the
homogeneous shear flow in a confined box. This flow is a bridge between the strongly
idealized homogeneous isotropic turbulence and the more realistic shear flows such
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as wall-bounded flows. Actually, the production of turbulent kinetic energy is fully
retained, so that the effect of changing the filter scale LF can be discussed in a
much cleaner form. In principle, the filter may directly affect the production range
for LF > LS , or it may influence only the transfer dominated range when LF <LS .
In any case, because of spatial homogeneity, the shear scale is fixed and additional
difficulties introduced by the presence of the wall, for example, spatial energy fluxes,
are avoided. Moreover, in the homogeneous shear flow, the mean velocity profile in
imposed, hence the effect of any LES model on the statistical properties of the velocity
fluctuations can be analysed more easily since the production term is affected only
by the calculated turbulent fluctuations. On the other hand, for wall-bounded flows,
both the fluctuations and the mean flow contribute to the value of the production
term.

From the above discussion we argue that LES might preserve the statistical
properties of the resolved fluctuations as far as LF <LS . This is the main question
addressed in the paper. We propose here to employ the Kármán–Howarth budget
to establish whether the dynamics of the resolved field is altered by the LES model.
As a proper extension of the Kolmogorov equation in an LES context, the Kármán–
Howarth budget directly involves the balance of turbulent kinetic energy production
and of the energy fluxes associated to the subgrid stresses. As pointed out in Meneveau
(1994) and Meneveau & Katz (2000) in the context of isotropic turbulence, the
Kármán–Howarth budget is a constraint to have the energy transfer rate towards
small scales correctly reproduced. The a posteriori comparison with filtered DNS data
(Piomelli, Moin & Ferziger 1988) will be used extensively to assess the quality of
the different LESs. We will also deal with higher-order statistical properties such as
the probability density function of longitudinal velocity increments and longitudinal
structure functions. The latter have been analysed by Kang, Chester & Meneveau
(2003) in an a posteriori comparison between filtered experimental data and the
corresponding LES of decaying grid turbulence. For a priori tests in grid turbulence
and in the wake of a cylinder, see Cerruti & Meneveau (2000).

The achievement of a flow with a uniform mean shear and homogeneous fluctua-
tions has been challenging both experimentally and numerically. The first experiment
by Rose (1966) showed that it was possible to realize a nearly homogeneous shear
flow in an experimental device. A detailed characterization of the flow was provided
by Champagne, Harris & Corrsin (1970). Harris, Graham & Corrsin (1977) and
Tavoularis & Corrsin (1981a, b) extended the analysis further downstream using
longer facilities. They found that both the turbulent intensities and the integral
scale were increasing monotonically downstream while the Taylor scale remained
substantially constant, see also the results by Rohr et al. (1988) in a water tunnel and
by Tavoularis & Karnik (1989) and be Souza, Nguyen & Tavoularis (1995). On the
numerical side, the first simulations in a confined box were performed by (Rogallo
1981). The numerical works by Rogers & Moin (1987) and Lee, Kim & Moin
(1990), focused on vorticity dynamics under strong shear, were followed by a detailed
discussion of the regeneration cycle of the vortical structures by Kida & Tanaka
(1994). Experiments have been re-addressed recently to deal with the issue of small-
scale isotropy recovery (see e.g. Garg & Warhaft 1998; Ferchichi & Tavoularis 2000).
As a follow on, Shen & Warhaft (2000) introduced an active grid to achieve higher
Reynolds numbers. Their flow featured an integral scale constant in the streamwise
direction, a crucial achievement in view of our present investigation. With the integral
scale comparable with the transverse dimension of the apparatus from the beginning,
any downstream growth was inhibited. By that time, Pumir & Shraiman (1994) and
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Pumir (1996) had performed extensive numerical simulations in a confined box and
were able to reach a statistically stationary state. In this case, the growth of the
integral scale was limited by the box size, with a strong resemblance of the findings of
Shen & Warhaft (2000). The effect of confinement was further discussed by Gualtieri
et al. (2002) and by Shumacher & Eckhardt (2000), who proposed an alternative
to Rogallo’s algorithm. A further extensive comparison between experiments and
numerics can be found in Shumacher (2001) and Shumacher, Sreenivasan & Yeung
(2003). More general observables – longitudinal structure functions, say (experiments
by Jacob et al. 2004) – were favourably contrasted to LES data in a confined box
(Casciola et al. 2005). As we see, the homogeneous shear flow has a long history and
nowadays evidence has been accumulated that, under proper confinement, the flow
attains a statistically stationary state, a condition which, combined with homogeneity,
largely simplifies the statistical analysis.

After this historical note we are ready to describe the structure of the paper.
Section 2 provides the background on the LES methodology. Section 3 illustrates the
budget for the resolved kinetic energy. The scale-by-scale Kármán–Howarth budget
is introduced in § 4 to contrast results for different filter-to-shear scale ratios against
filtered DNS data. Finally, higher-order statistics is discussed in § 5 before drawing
our main conclusions in § 6 which infers the implications for bounded flows.

2. Large-eddy simulation of the homogeneous shear flow
We consider a homogeneous turbulent shear flow in a confined box with an

imposed mean velocity gradient S. The velocity field v is decomposed into mean U

and fluctuation u, v = U (x2)e1 +u, where U (x2) = Sx2 is the mean flow, S the constant
shear, e1 is the unit vector in the streamwise direction with x2 the coordinate along
the mean velocity gradient and x3 spanwise. In the incompressible Navier–Stokes
equations, ∇ · u = 0, written in terms of velocity fluctuations

∂u
∂t

= (u × ζ ) − ∇π + ν∇2u − Sve1 − U
∂u
∂x1

, (2.1)

ζ is the curl of u, v ≡ u2, π is the modified pressure which includes the fluctuating
kinetic energy u2/2, ν is the kinematic viscosity and the divergence of the Reynolds
stress tensor – a tensor field constant in space in a homogeneous flow – vanishes. After
the positions ξ1 = x1 −U (x2)t ξ2 = x2 ξ3 = x3 τ = t (Rogallo 1981), the momentum
equation is rearranged as

∂u
∂τ

= (u × ζ ) − ∇π + ν∇2u − Sve1, (2.2)

where the convection operated by the linear mean profile has been absorbed in
the transformation and the spatial derivatives are now expressed in ξ -variables. By
assuming periodic fluctuations in ξ -space we achieve a homogeneous shear flow in
x-space, where the mean shear is exactly constant and the fluctuations are
homogeneous in a statistical sense. Clearly, the finite box confines the flow and
limits the growth of the integral scale. In the issuing stationary state, the system
is characterized by pseudo cyclic oscillations of the turbulent kinetic energy (Pumir
1996; Gualtieri et al. 2002; Yakhot 2003; Shumacher 2004). In this respect, despite
an artificial flavour, ξ -periodicity is beneficial since it sets a perfectly controllable
environment to analyse the statistics of shear-dominated fluctuations. It also enables
the use of standard pseudospectral methods in ξ -space, with all the related advantages
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of accuracy and efficiency they bring about both for the direct (DNS) and the large-
eddy simulation (LES) of the flow.

The coarse graining of the field is achieved by convolution with a filter kernel G

acting in x-space, which is spatially homogeneous with a compact support to ensure
the commutation of spatial derivatives and filtering operator. The equation for the
coarse-grained field ū follows after applying the filter,

∂ ū
∂t

= (u × ζ ) − ∇π̄ + ν∇2ū − Sv̄e1 − U
∂u
∂x1

, (2.3)

where, according to widespread use, the overbar denotes filtering. The term accounting
for the convection of the mean field is split into two contributions

U
∂u
∂x1

= U
∂u
∂x1

−
∂

(
Uu − Uu

)
∂x1

, (2.4)

where the last contribution on the right-hand side is periodic in ξ -space while the
first one can be absorbed into Rogallo’s transformation to yield

∂ ū
∂τ

= (h + H) − ∇π̄ + ν∇2ū − Sv̄e1. (2.5)

In (2.5), neither h = u × ζ nor H = ∂(Uu − Uu)/∂x1 have closed form in terms of u
alone, and must be modelled.

Among the available closure models, we have chosen one in the class of
deconvolution methods, namely the approximate deconvolution method (ADM)
(Stolz & Adams 1999; Stolz et al. 2001). Moreover, the model presents a single
tunable constant χu which controls the relaxation term σ introduced below to enforce
stability. Clearly this is one of the possible choices in the class of models based on the
estimation of unresolved scales which have been considered by different authors (see
e.g. Domaradsky & Saiki 1997; Guerts 1997; Domaradsky & Loh 1999; Guerts &
Holm 2003; Mathew et al. 2003, 2006).

In the spirit of deconvolution approaches, the unknown field u is replaced in the
unclosed terms h and H by the estimate u � u∗ = QN ∗ ū obtained from the coarse-
grained field via an approximate inverse filter QN =

∑N

n= 1(I − G)n � G−1 (Stolz &
Adams 1999). Here we use N = 5. Hence the approximately deconvolved terms are

h∗ = u∗ × ζ ∗, H∗ =
∂(Uu − Uu∗)

∂x1

, (2.6)

and the LES equations read

∂ ū
∂τ

= (h∗ + H∗) − ∇π̄ + ν∇2ū − Sv̄e1 + σ, (2.7)

where we have added the relaxation term σ . As they stand, the LES equations (2.7)
are independent of the discretization procedure. In principle, we could define a filter
cutoff length LF and refine the grid by reducing the mesh size ∆ until the modelled
coarse-grained equation yields a convergent solution (Guerts & Frohlich 2002).

In fact, such, a grid-independent solution is hardly achieved in practice and the
finite mesh size ∆ enters beside LF as an additional length scale in the discrete
problem. It is on finite grids that the relaxation term σ = −χu(I − QN ∗ G) ∗ ū (Stolz
et al. 2001), may become crucial. Actually, the approximate inversion of the filter is
reasonably accurate in the range ω = k∆ � ωF , where k is the wavenumber and ωF

the nominal dimensionless cutoff wavenumber of the filter such that |Ĝ(ωF )| = 1/2
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(a hat denotes here the Fourier transform in x-space, and ωF = 2π∆/LF ). Hence,
for ω � ωF , Ĝ(ω) � 1 and Q̂N (ω) � 1, so that σ̂ (ω) � 0, i.e. the resolved scales are
untouched by the artificial dumping. On the contrary, in the high-wavenumber range
of the grid ωF � ω � ω∆ a non-vanishing energy transfer towards the scales beyond
grid resolution, ω >ω∆, calls for an additional, purely dissipative term purposely
designed to remove energy from the high-wavenumber end of the spectra. Here, in
general, we have to expect σ̂ (ω) �= 0. This kind of reasoning is recast in a more
rational form (Carati et al. 2001; Winckelmans, Wray & Jeanmart 2001). LES can
be obtained from the Navier–Stokes equations by applying a smooth filter and
a discretization operator. Two different contributions appear then in the subgrid
stresses. One, the resolved subgrid stresses, can in principle be recovered exactly
from the filtered velocity field when invertible filters are used. In our case, the
approximate deconvolution provides an estimate of this part. The other contribution,
the unresolved stresses, is due to the discretization which irreversibly destroys all
the information below the grid spacing. There is no chance of recovering these
stresses in purely mathematical terms. In the context of the ADM, the unresolved
stresses are modelled via the purely dissipative relaxation term. As shown later,
it becomes substantially irrelevant when the resolved subgrid stresses fall short of
accounting for the entire amount of stress required by the simulation. In any case,
the relaxation term introduced above is not the only possibility for modelling the
unresolved stresses in a deconvolution model. An eddy-viscosity model can work as
well, see Carati et al. (2001) and the application in a channel flow by Gullibrand &
Chow (2003).

Before discussing the simulations and the quality of the turbulence, let us provide
a few more details on the numerics. The geometry of the flow naturally calls for
Fourier-based pseudospectral algorithms in ξ -space where the modified pressure is
eliminated via the classical Fourier-space projector, with the advantage that the
high accuracy prevents numerical errors from overwhelming the subgrid model (see
Ghosal 1996; Chow & Moin 2003). Time advancement is achieved through a fourth-
order low-storage Runge–Kutta method. A re-meshing procedure, whereby the box is
mapped back to its initial unskewed configuration, is periodically applied to mitigate
the distortion of the grid in physical space, as originally suggested by Rogallo (see
Gualtieri et al. 2002 and references therein). We stress that aliasing errors can be in-
duced in principle by the moving grid. To avoid spurious contamination of the
resolved range, every time the box is re-meshed, dealiasing is performed concurrently.
Care is taken to ensure that only an insignificant fraction of the energy is filtered-out
in this way when the code is operated in DNS mode, which is of course the case that
is potentially more sensitive to this issue, since in LES the explicit filtering already
keeps the situation under control. The Appendix and figure 1 give further information
on the filtering procedure and the main properties of the filters.

3. Low-order statistics
Several LES simulations which differ for filter scale LF , and nominal Reynolds

number ReN = SL2
y/ν – Ly is the box dimension in the shear direction – are addressed

to discuss the quality of the large-scale statistics. In all cases, the subgrid resolution
LF /∆ is held fixed. Owing to filtering, below LF the field is smooth. Hence the subgrid
resolution is a measure of the accuracy achieved in solving the filtered equations, i.e.
we recover their exact solution when ∆ becomes sufficiently smaller than LF . Two
values of the Reynolds number are considered, namely ReN � 10 000 and 20 000. The
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Figure 1. Fourier transform of the primary filter Ĝ (solid lines), of the approximate inverse
Q̂N (dashed lines) and of the secondary filter R̂ = Î − Q̂NĜ (dotted lines) as a function of the
non-dimensional wavenumber ω = k∆/π. Lines with symbols correspond to the filter used in
the direction of the mean shear. Note the different non-dimensional cutoff wavenumber which
correspond, to a physical length scale LF uniform in all the three spatial directions.

shear S and and the box dimension Ly in the direction of the shear are kept constant,
together with all the other geometrical (e.g. aspect ratios) and numerical (e.g. time
step, re-meshing frequency, dealiasing procedure) parameters.

The basic data set consists of three simulations at ReN � 10 000, ordered by
increasing cutoff length (i.e. LF 1 <LF 2 <LF 3) and denoted by LES1, LES2 and
LES3, respectively. We have also performed an extensive analysis at larger Reynolds
number (ReN � 20 000) to check the sensitivity of the subgrid model to variations
in the relaxation parameter χu for two choices of the filter scale, LF 1 <LF 2. These
simulations are denoted with the superscript ‘H ’. Table 1 provides a summary of the
data set and the main global features for each case.

Beside the large-eddy simulations, two fully resolved DNS were run to obtain real
Navier–Stokes turbulence in corresponding physical conditions. DNS fields have been
a posteriori filtered to provide reference filtered data. The corresponding data sets
are denoted by DNS1, DNS2, DNS3 and DNSH

1 , DNSH
2 , for the lower and higher

Reynolds number, respectively. The first five entries in table 1 provide information
on the coarse-grained DNS data sets for comparison with corresponding LES. The
parameters of the two DNS are given in table 2.

3.1. Turbulence scales

As is well known, the shear scale LS =
√

ε/S3, where ε is the mean turbulent kinetic
energy dissipation rate, plays a fundamental role. Within the inviscid range above
the Kolmogorov scale η = (ν3/ε)1/4 and below the integral scale L0, LS singles out
the scales LS < r <L0 where turbulence is driven by the production, from those
η < r <LS where the inertial energy transfer is established to give rise eventually to the
dissipative range. However, there are other characteristic length scales in turbulence.
A classical example of intermediate scale is the Taylor microscale λ2 = 15νu2

rms/ε, here
conventionally defined in terms of the streamwise fluctuations urms =

√
〈u2

1〉, where
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Run LF LF /LS ūrms 〈ū1ū2〉 Π ε̄ν ε∗
sgs εrel εda STmax

DNS1 0.59 0.82 0.52 −0.133 0.066 0.020 0.046 – – –

DNS2 0.79 1.10 0.50 −0.128 0.064 0.012 0.052 – – –

DNS3 1.05 1.46 0.44 −0.102 0.051 0.008 0.043 – – –

DNSH
1 0.59 0.82 0.49 −0.120 0.060 0.010 0.050 – – –

DNSH
2 0.79 1.10 0.42 −0.092 0.046 0.009 0.053 – – –

LES1 0.59 0.82 0.51 −0.133 0.066 0.022 0.042 0.4 × 10−4 0.2 × 10−2 7800
LES2 0.79 1.10 0.45 −0.106 0.053 0.014 0.037 0.8 × 10−4 0.2 × 10−2 7600
LES3 1.05 1.46 0.37 −0.071 0.035 0.008 0.025 0.2 × 10−2 – 2300
LESH

1 (a) 0.59 0.82 0.50 −0.120 0.060 0.010 0.038 0.7 × 10−2 0.5 × 10−2 2000
LESH

1 (b) 0.59 0.82 0.47 −0.115 0.057 0.012 0.040 0 5.5 × 10−3 2000
LESH

2 0.79 1.10 0.43 −0.092 0.046 0.007 0.029 0.8 × 10−2 2 × 10−3 4000

Table 1. Summary of coarse-grained DNS and LES. The cutoff length scale LF of the
filter is constant in the three Cartesian directions, while the grid spacing changes. The cutoff

wavenumber, once made dimensionless with the appropriate grid spacing, is 2π∆
(x/z)
LES /LF = 2/3π

in both the streamwise and the spanwise direction and 2π∆
(y)
LES/LF = 1/3π along the mean

gradient, see figure 1. The resolutions of the four LES are 64 × 64 × 32 (LES1 and LESH
1 ),

48 × 48 × 24 (LES2) and 36 × 36 × 18 (LES3). The corresponding coarse-grained DNS are
denoted as DNS1, DNS2, DNS3 and DNSH

1 , DNSH
2 . The viscous dissipation associated to the

resolved (LES) or to the coarse-grained (filtered DNS) field is denoted by ε̄ν . Column ε∗
sgs gives

the amount of dissipation ascribed to the explicit subgrid stresses. It corresponds to the total
subgrid dissipation for the coarsened DNS fields while for LES, additional energy draining is
due to the relaxation term, εrel, and to dealiasing, εda . Within statistical accuracy, the sum ε
of all terms balances the resolved production ε = Π = −S〈ū1ū2〉. This allows us to estimate
by difference the energy dissipated in the LES via dealiasing. For LES3, εda , comparable in
magnitude with the confidence interval for the average production Π , is not reported. The
relaxation parameter χu was systematically varied in the range 0 < χu < 2000uτ /Ly where the
equivalent friction velocity is uτ =

√
νS − 〈u1u2〉. The data shown in the table correspond to

the upper limit. Last column: total integration time of the LES simulations.

Run ReN Reλ S∗ urms 〈u1u2〉 Π = ε LS λ η STmax

DNS 9870 100 7 0.52 −0.118 0.059 0.72 0.37 0.02 870
DNSH 19740 150 7 0.52 −0.118 0.059 0.70 0.27 0.01 340

Table 2. Summary of DNS simulations. The Reynolds number is defined as Re = SL2
y/ν,

the box size is Lx × Ly × Lz = 4π × 2π × 2π. Resolution: DNS 256 × 256 × 128 Fourier modes.
DNSH 384 × 384 × 192 Fourier modes. The Taylor microscale Reynolds number is Reλ =
urmsλ/ν where urms =

√
1/3〈uiui〉 and λ2 = 15νu2

rms/ε with ε the mean turbulent kinetic energy
dissipation rate. The shear parameter is S∗ = 3u2

rmsS/ε = (L0/LS)
2/3, where L0 = (3u2

rms)
3/2/ε

is the integral scale, LS =
√

ε/S3 the shear scale and η =(ν3/ε)1/4 the Kolmogorov scale. Last
column: total integration time of the simulations.

the angular brackets denote ensemble averaging. It is worth stressing that LS/L0 is
a Reynolds-number-independent quantity, set by the large scales of the flow, as is
immediately realized from the turbulent kinetic energy balance ε = −〈uv〉S. On the
contrary, the Taylor microscale λ depends on the small scales, as is understood from
the usual scaling argument Reλ = urmsλ/ν ∝ (urmsL0/ν)1/2. This simple reasoning is
important for LES. At the fixed the subgrid resolution LF /∆, the basic parameter
which affects the resolved scales is the filter cutoff length LF . As the nominal
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Figure 2. (a) Time history of the turbulent kinetic energy. Top panel: DNS. Bottom panel:
LES. (b) Production of turbulent kinetic energy (solid line), resolved dissipation (dashed line)
and subgrid dissipation (dotted line).

Reynolds number increases, we expect the large scales soon to reach a Reynolds-
number-independent behaviour with viscous effects confined below λ, i.e. further and
further away from the resolved scales above LF . This rules out the possibility that
a posteriori filtered data could show a dependence on the Taylor microscale, unless
viscous effects are directly called into play, say by the no-slip condition in regions very
close to a solid wall. Hence, if LF /∆ is large enough to have reasonable numerical
accuracy and the Reynolds number is not too small, a well-designed subgrid model
should yield large-scale fluctuations which depend on the single parameter LF /LS .

3.2. Statistically stationary state

Let us turn our attention to the numerical results. In this system the integral scale
cannot exceed the box size (Gualtieri et al. 2002). This leads to a statistically stationary
state characterized by a cyclic growth and depletion of turbulent kinetic energy, as
discussed by Pumir (1996) and Shumacher & Eckhardt (2000). The same behaviour
is reproduced by the LES, where the subgrid energy dissipation rate plays a crucial
role in the equation for the spatially averaged resolved turbulent kinetic energy

∂

∂t

[
ū2

2

]
= −S[ū1ū2] − 2ν[s̄ij s̄ij ] + [τij s̄ij ] + [σiūi], (3.1)

where square brackets denote spatial average, s̄ij is the resolved strain rate, τij the
subgrid stresses and σi the relaxation stress.

A small portion of the time history of the resolved turbulent kinetic energy for
case LES1 (see table 1) is reproduced in figure 2. The balance between production,
resolved and subgrid dissipation is achieved as a time average over the aforementioned
pseudocyclic behaviour. The bursting frequency of these self-sustained oscillations was
shown to be independent of the box size and controlled by the inviscid time scale S−1

(Gualtieri et al. 2002). Yakhot (2003) concluded that, in the large-strain limit, this
dynamical system is characterized by self-sustained nonlinear oscillations with size-
independent period. Apparently, LES correctly reproduces the sequence of large-scale
essentially inviscid events which give rise to the cycles (figure 2).
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3.3. Reynolds stresses

If we were to judge the quality of a large-eddy simulation from a single observable,
a candidate would be the shear component of the Reynolds stress, −〈u1u2〉. Since
the flow is statistically homogeneous and stationary, common practice demands that
we estimate the averages from the mean values taken simultaneously in space and in
time – temporal mean values are indicated by a tilde, −〈u1u2〉 � −[ũ1u2].

Clearly, there is no way to reconstruct the exact Reynolds stress from an LES.
Instead we access the resolved Reynolds stresses, whose shear component −〈u1u2〉
can be directly compared to the correspondingly filtered DNS. The shear scale
in both our DNS is about LS = 0.72 (table 2) since the Reynolds shear stress is
−〈u1u2〉 =0.118 in either case and both flows are in equilibrium −S〈u1u2〉 = ε =0.059.
From table 1, as the filter bandwidth increases, an increasingly significant part of
Reynolds stress and production in the DNS occurs below the filter cutoff. Hence,
most quantities are progressively underestimated by the filtered fields, e.g. the coarse
grained production Π = −S〈ū1ū2〉 – more properly the production associated with
the coarse grained field – differs from the DNS by almost 14 % in the case of
the most severe filter corresponding to DNS3. Similar trends are displayed by the
other quantities. Compared to unfiltered data, Reynolds-stress-related quantities first
increase – DNS1 – to decrease afterwards monotonously with the filter bandwidth –
DNS2 and DNS3. This behaviour is easily understood from the Fourier decomposition
of the shear stress, the cospectrum 〈û1û2〉 (not shown), which, being negative at large
scales, becomes positive at high wavenumbers. The same trend is followed by the
resolved production Π and by the overall dissipation ε of the exact coarse-grained
field, which is defined as the sum of the resolved dissipation εν =2νsij sij and the
subgrid energy transfer εsgs = 〈τij sij 〉, where the exact subgrid stress is

τij = uiuj − uiuj , (3.2)

and sij is the filtered deformation velocity. The fluctuation intensity of the coarse-

grained field urms =
√

1/3〈uiui〉 provides analogous indications.
Whatever the behaviour, the filtered DNS results we have discussed so far are

exact, a matter of consistently applying a well-defined filtering procedure to the fully
resolved fields. The interesting comparison is between ‘exact’ a posteriori filtered
data and LES simulations, where we introduce the inaccuracy of the subgrid model
(table 1). A filter scale only 10 % above the shear scale results in approximately 20 %
error in the resolved Reynolds stresses, see LES2 in comparison with DNS2, and, in
general as LF increases above LS a progressive misprediction of the large-scale energy
production rate occurs in the LES, see LES3 vs. DNS3. Instead, when LF � LS , we
observe an almost perfect agreement between filtered DNS and LES, compare DNS1

and LES1 in table 1. The same trend is observed also for the higher Reynolds number,
ReN =20 000, provided LF <LS . In this case, the relaxation parameter χu must be
tuned properly in the ADM and more generally the unresoved stresses, to recover the
turbulent kinetic energy production rate, as we will discuss in more detail in § 3.4.

Consistently with our initial conjecture, in the context of the ADM as soon as the
filtering occurs above the shear scale, LF >LS , the model becomes unable to agree
with the filtered DNS, see case LESH

2 in the table, where the reasonable value of
the production occurs by chance in a general framework of bad values for other
statistical observables such as the energy spectra, as will be discussed in § 3.5
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3.4. Turbulent kinetic energy budget

As anticipated, the subgrid stresses are given in the ADM model by two contributions.
An explicit term,

τ ∗
ij = u∗

i u
∗
j − uiuj , (3.3)

which, a part from the deconvolution of the resolved field implied by the asterisk,
corresponds to the exact subgrid stresses (3.2), plus the additional dissipative
contribution σ provided by the relaxation term, whose underlying stresses τσ would
be given by the equation ∇ · τσ = σ . In fact, in a fully dealiased spectral method, the
dynamics is also affected by ‘virtual’ subgrid stresses associated to dealiasing. The
explicit form taken either by τσ or by the ‘virtual’ stresses is of no practical relevance.
The amount of resolved kinetic energy they drain from the resolved field is, however,
important. In such conditions, in a homogeneous stationary ensemble, the balance of
resolved turbulent kinetic energy becomes

Π = εν + εsgs = εν + ε∗
sgs + εrel + εda, (3.4)

where the total subgrid energy transfer εsgs is the sum of the transfer operated by the
explicit subgrid stresses, ε∗

sgs = 〈τ ∗
ij sij 〉, of the energy drain due to the relaxation term

εrel = 〈σiui〉 and of the energy removed on average by the dealiasing procedure εda .
In table 1, the balance (3.4) is addressed term by term for both values of the

nominal Reynolds number we have considered.
Let us first address the smaller-Reynolds-number case, ReN � 10 000. When LES

and filtered DNS data agree – LES1 vs. DNS1, LF /LS � 0.8 – filtering occurs below
the shear scale and the explicit subgrid stresses account for all the subfilter energy
transfer. A small fraction – order of 3 % – of the dissipation in the resolved scale
is due to dealiasing. Only an insignificant part of dissipation – less then 0.06 % – is
generated by the relaxation term. In these conditions, if the artificial relaxation term
is turned off by putting χu = 0, no appreciable change is observed in the solution.
If we move the filter cutoff a little above the shear scale – as in LES2 and DNS2,
LF /LS = 1.1 – a certain inaccuracy in the LES begins to emerge and modelling
errors tend to become significant, namely the intensity in the resolved fluctuations is
underestimated by about 10 % while Reynolds shear stress and resolved production
are wrong by more then 17 %. Still the energy drained by the artificial relaxation
term is negligible and dealiasing gives a small contribution. Increasing further the
filter scale – LES3 vs. DNS3 – leads to incorrect results, e.g. the resolved Reynolds
shear stress is missed by about 30 %. In these conditions the artificial relaxation and
dealiasing contribute significantly, and the results are bound to depend on the value
of the tunable constant χu.

When the Reynolds number increases, ReN = 20 000, the interaction between sub-
grid and resolved scales above the nominal filter cutoff is no longer negligible and the
unresolved stresses, vanishingly small at ReN = 10 000, are now substantial. In these
conditions, the resolved stresses cannot account for the total energy flux. It follows
that the additional energy draining due to the relaxation term becomes important in
‘real LES’ conditions.

In fact, for the LESH
1 (a) at ReN = 20 000, the grid is sufficiently fine to resolve the

shear scale LS and LF <LS . At this Reynolds number, a significant activity occurs
below the grid cutoff ∆ of the LES, as shown by the DNS data. The balance (3.4)
(table 1) confirms that the production of the turbulent kinetic energy is captured
well by the LES. However, the resolved stresses do not give the reason for the entire
amount of subfilter energy transfer. Its correct value is recovered only when adding
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Figure 3. (a, b) Energy spectra for LES and filtered DNS data. Top panel: LF /LS = 1.10,
LES2 (line) vs. DNS2 (triangles). Bottom panel: LF /LS = 0.82, LES1 (line) vs. DNS1 (circles).
(c) Same data plotted as ratio of LES to filtered DNS spectra, LF /LS = 0.82 (circles) and
LF /LS = 1.10 (triangles). The filter cutoff is indicated by the vertical dashed and dotted line
at kF = 8 and kF = 10.7, respectively.

the contributions of the relaxation term and dealiasing. The relaxation term provides
10 % of the total energy flux and it is crucial. Switching the relaxation parameter off,
completely destroys the accuracy, see case LESH

1 (b). Actually, LESH
1 (a) with χu =100

compares favourably with DNSH
1 whereas LESH

2 (b) with χu = 0 does not. An extensive
sensitivity analysis to changes in χu (not shown) indicates that its precise value is
not critical and χu = 150 works as well. Compared with ReN = 10 000, doubling the
Reynolds number with the same grid, shear and filter scale enhances the relaxation
term by two orders of magnitude, LES1 vs. LESH

1 .

3.5. Energy spectra

In LES, accurate single-point observables do not necessarily guarantee the correct
energy distribution in wavenumber, see for example the comments in Jimenez & Moser
(2000), since the modelled subgrid stresses may still alter the resolved scales. Spectra
from LES are shown in figure 3 for our moderate-Reynolds-number case. As far as
LF <LS , they are consistent with DNS. As soon as LF >LS , the solution becomes
inadequate in terms of both subgrid dissipation and spectrum, as confirmed by the
resolved-to-exact spectral density ratio (figure 3c). The alteration of the spectra, just
perceivable at LF /LS = 1.1, becomes substantial at LF /LS = 1.46. Figure 4 repeats
the analysis at ReN =20 000. The alteration is apparent for case LESH

2 where LF >LS .
Also at this Reynolds number everything works well when LF < LS and the constant
in the relaxation term is properly tuned, as for case LESH

1 (a). However, with this
relatively coarse grid, turning off the relaxation term irremedably deteriorates the
spectra, case LESH

1 (b), see figure 4(b) where the energy spectra are reported in a
linear scale to appreciate better the largest resolved scales.

4. The Kármán–Howarth budget
In a homogeneous shear flow, the energy content of the different scales is set by a

delicate balance between production and transfer. A poor reproduction of either one
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Figure 4. (a) Energy spectra for LES (lines) and DNS (symbols) at ReN � 20 000. LESH
2

(dash-dotted line) corresponding to LF /LS = 1.10 and Xu =150. LESH
1 (a) (solid line) with

LF /LS = 0.82 and Xu = 150. LESH
1 (b) (dotted line) with LF /LS = 0.82 and Xu = 0. (b) Same

spectra in linear scale; symbols as in (a).

results in erroneous equilibrium conditions at each scale, and this inevitably leads to
the wrong shapes for the spectra.

In isotropic conditions, the Kármán–Howarth equation describes the Richardson
energy cascade and reduces to the celebrated Kolmogorov four-fifths law. For
anisotropic flows, a generalization thereof allows for the evaluation of the nonlinear
energy flux and of the production of turbulent kinetic energy related to each scale
(Casciola et al. 2003). In the present context, it is crucial to take into consideration
the subgrid stresses both in the exact and in the modelling context. The analysis is
focused on the central processes of turbulent kinetic energy production and transfer
towards small scales. For a related analysis in isotropic conditions see Meneveau
(1994).

The principal manipulations helpful in deriving the balance equation are reviewed
below, to offer a self-contained discussion while at the same time taking the chance
of commenting on the effect of filtering and modelling.

Let us rewrite in a slightly more general form the filtered Navier–Stokes equation
for the fluctuating field

∂ui

∂t
+ uk

∂ui

∂xk

= − 1

ρ

∂p

∂xi

− Uk

∂ui

∂xk

− uk

∂Ui

∂xk

+ ν
∂ui

∂xk∂xk

− ∂

∂xk

(τik + Tik) + σi, (4.1)

where the homogeneous mean flow is Uk =(∂Uk/∂xj )0
xj , and p is the pressure. When

the only non-vanishing component of the constant gradient is (∂U1/∂x2)0
= S, we

recover the shear flow. Equation (4.1) reduces to a simple filtering when τik = uiuk −
uiuk , Tik = uiUk − uiUk and σi =0. Alternatively, after setting τik = u∗

i u
∗
k − uiuk ,

Tik = u∗
i Uk − uiUk and taking the appropriate expression for the relaxation term

σi we recover an equation equivalent to (2.7).
We derive first an equation for the two-point correlation 〈uiu

′
j 〉 where a prime

denotes the velocity evaluated at y = x + r following the procedure reported in
Casciola et al. (2003). After taking the trace of the equation for the two-point
correlation rearranging certain contributions in terms of velocity increments –
δUk = U ′

k − Uk for the mean flow and δui = u′
i − ui for the coarse-grained fluctuating

field – we introduce the two-point-averaged tensors τ
†
ik = τ ′

ik + τik and T
†
ik = T ′

ik + Tik

to obtain the equation for the turbulent scale energy of the coarse-grained field
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Figure 5. ReN =10 000. Transfer term in the Kármán–Howarth budget Str
3 /r vs. separation.

(a) LF /LS = 1.10, LES2 (line) vs. DNS2 (circles). (b) LF /LS = 0.82, LES1 (line) vs. DNS1

(circles). Triangles provide unfiltered DNS data for comparison.

〈δu2〉 = 〈δuiδui〉. Finally, the equation is spatially averaged on a ball Br of radius r

leading to the Kármán–Howarth equation,

1

4πr2

∮
∂Br

〈δu2δuk〉nk + n1n2Sr〈δu2〉 dSr +
2

4πr2

∮
∂Br

〈(τ †
ik + T

†
ik)δui〉nk dSr

= 4
3
S〈u1u2〉r − 2S

4πr2

∫
Br

〈δu1δu2〉 dVr − 4
3
〈σiui〉r

+
2

4πr2

∮
∂Br

〈δσiδui〉 dVr +
d

dr

(
2ν

4πr2

∮
∂Br

〈δu2〉 dSr

)
, (4.2)

either for the coarse-grained or for the LES modelled field, depending on the
definitions of τik , Tik and σi – remember that 1 and 2 are the directions of mean
stream and mean gradient respectively, while n is the outward normal to the ball. As
we see from (4.2), several mechanisms are involved in the balance of the scale energy
of the coarse-grained field. The first term in the left-hand side,

Str
3 =

1

4πr2

∮
∂Br

〈δu2δuk〉nk + n1n2Sr〈δu2〉 dSr, (4.3)

is a generalized third-order structure function, see the classical Kolmogorov four-fifths
law where it is reshaped in terms of longitudinal structure function, Str

3 ∝ 〈δu3
‖〉. This

term quantifies the energy flux across scale r , i.e. the energy which feeds the scales
smaller than r . Here we are dealing with the filtered field, and the flux is due to the
nonlinear self-advection and to the mean shearing of the coarse-grained fluctuations.

Str
3 is plotted in figure 5, where LES data at ReN = 10 000 (lines) are contrasted

against corresponding filtered DNS data (circles) for a posteriori comparison. The
figure also shows the same term taken from the fully resolved DNS (triangles), the
same as (4.3) except from filtering, i.e. now applied to the fine-grained field u rather
than to u. As it should, filtering changes the transfer term substantially – circles vs.
triangles in the figure. The difference is significant in the intermediate range of scales,
where the transfer term contributes the most. Concerning modelling (lines vs. circles),
as the filter cutoff scale is appreciably larger than the shear scale, the accuracy of our
LES model in reproducing the energy flux is poor, see figure 5(a). The decrease of
LF below LS (figure 5b) considerably enhances the predictive power of LES for this
rather delicate observable, which now approximates the exact values well.
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Figure 6. ReN = 10 000. Production term in the Kármán–Howarth budget S
pr
3 /r vs. sepa-

ration. (a) LF /LS = 1.10, LES2 (line) vs. DNS2 (circles). (b) LF /LS = 0.82, LES1 (line) vs. DNS1

(circles). Unfiltered DNS data are also plotted (triangles).
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Figure 7. ReN = 20 000. (a) Transfer term in Kármán–Howarth budget Str
3 /r vs. separation.

(b) Production term S
pr
3 /r . LESH

1 (a) (lines) vs. DNSH
1 (circles). Unfiltered DNS correspond to

the triangles.

The other relevant mechanism in shear turbulence is the production of turbulent
kinetic energy. In the scale energy balance it is described by the term

S
pr

3 =
2S

4πr2

∫
Br

〈δū1δū2〉 dVr, (4.4)

which is plotted in figure 6 for the available data. Also in this case, a perfect
agreement with filtered DNS data is observed when LF < LS . On figure 6(a) LF >LS ,
the modelling error induces a discrepancy with the exactly filtered data (lines vs.
circles) which largely overcomes the effect of filtering itself (circles vs. triangles). In
figure 6(b) we see how the LES data approach the filtered DNS results, reproducing
the expected difference with the fully resolved DNS production. Here the effect of
pure filtering is felt strongly on the large scales, where production is the dominating
phenomenology.

Figure 7(a) shows Str
3 and figure 7(b) shows S

pr

3 at ReN = 20 000. At this higher
value of the Reynolds number, the relaxation term is significant. Nevertheless resolved
energy flux and production is in excellent agreement with DNS data as soon as
LF <LS .
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Figure 8. ReN =10 000. Compensated subgrid fluxes and viscous terms in the Kármán–
Howarth budget against separation. (a) LF /LS =1.10, LES2 (line) vs. DNS2 (circles). (b) LF /
LS =0.82, LES1 (line) vs. DNS1 (circles).

Finally, let us address the subgrid stresses which contribute the term

S
sgs
3 =

2

4πr2

∮
∂Br

〈(τ †
ik + T

†
ik)δui〉nk dSr . (4.5)

At separations of the order of the filter scale, the energy flux cannot be sustained
by the transfer term Str

3 associated with the coarse-grained field, and the subgrid
contribution S

sgs
3 becomes significant. The latter globally represent the scale-energy

which is drained from scales larger than r to feed subfilter fluctuations. Its sum with
the viscous correction is plotted in figure 8. The agreement with the exact fluxes of
the same nature provided by the DNS data is surprising as soon as LF < LS . The
violation of this condition again leads to significant modelling errors.

5. The p.d.f. of the resolved velocity increments and intermittency
So far we have been dealing with low-order observables to show that certain crucial

scale-dependent statistical objects, such as the energy transfer, can be reproduced by a
suitably designed LES. The target of the present section is a more sophisticated feature
of the field, described by the probability distribution function (p.d.f.) of longitudinal
velocity increments or, equivalently, by the longitudinal structure functions.

In the homogeneous shear flow, the streamwise velocity increment δu1(r1) = u1(x1 +
r1, x2, x3) − u1(x1, x2, x3) is a random variable whose probability distribution function
depends only on separation. The phenomenology of fully developed turbulence implies
that, for scales belonging to the classical inertial range, the probability of occurrence
of large deviations increases as the separation is progressively reduced. Hence the tails
of the p.d.f. decays to zero at a slower rate as the considered scale becomes smaller.
This behaviour of the random variable is called intermittent (see e.g. Frisch 1995).
Intermittency can be characterized by addressing the scaling laws of the different
moments of the p.d.f. – i.e. the structure functions 〈δup

1 〉 – as functions of the sepa-
ration. The exponents ζ (p) of the scaling laws in the inertial range – 〈δup

1 〉 ∝ r
ζ (p)
1 –

are a convex function of the order of the moment, (p + 1)/3 − p/3 > ζ (p + 1) − ζ (p).
As a consequence, the flatness of the p.d.f. – F4(r1) = 〈δu4

1〉/〈δu2
1〉2 – increases as scale

separation r1 is reduced within the inertial range, implying the intermittent behaviour
of the signal.
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Figure 9. Probability density function of the filtered longitudinal velocity increments
δū1(r1) = ū1(x1 + r1) − ū1(x1) at separation (a) r = 29∆ � 1.42 and (b) r = 33∆ � 1.62. DNS
data filtered at LF =0.59 (circles) and at LF = 0.79 (triangles) and corresponding LES data,
solid and dashed line, respectively.

A large-Reynolds-number shear flow is expected to manifest such purely inertial
behaviour of the structure functions at small scales, i.e. below LS . Above the shear
scale, the process of turbulent kinetic energy production acts to enhance intermittency
(Benzi et al. 1999). Clearly, in a number of contexts, intermittency has no practical
consequences, and one may be content with LES models able to reproduce accurately
only the gross features of the flow. However, there are cases where it is significant, for
example, when clustering processes matter, such as for bubbly flows, particle-laden
flows, droplets dynamics, spray dynamics or combustion. These large-scale effects
belong to the realm of an ideal LES. Whether they are captured by actual LES models
is, in fact, an open issue. We attempt to address the subject here by using filtered fields
to construct the velocity increments δū1(r1) = ū1(x1+r1, x2, x3) − ū1(x1, x2, x3) and their
probability density function, see also Kang et al. (2003) for a related discussion on
decaying turbulence.

As in previous sections, we contrast LES data with a posteriori filtered DNS
results. The comparison is presented in figure 9 for the p.d.f. computed at separation
r = 29∆ � 1.42 (figure 9a) and r = 33∆ � 1.62 (figure 9b). Both separations fall in a
range of scales above LS � 0.72 and are nominally resolved, i.e. they are larger than
the filter scale LF . Again we discuss two different simulations, with the filter scale,
respectively, above and below the shear scale. According to figure 9, the tails of the
p.d.f., especially the negative one associated with the energy transfer towards small
scale, do not match the filtered DNS when LF >LS . The agreement is excellent when
the shear scale is resolved by the filter. Overall the behaviour is consistent for both
separations (figure 9).

From the qualitative analysis of the p.d.f. we anticipate that positioning the filter
cutoff below the shear scale is the crucial condition. Once this is accomplished, the
LES reproduces the correct intermittency of the field and captures the statistics of
the intense fluctuations occurring in the tails of the p.d.f. More quantitative data are
provided by the structure functions,

〈
δū

p

1 (r1)
〉

=

∫
ξpPδū1

(ξ, r1) dξ. (5.1)
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Figure 10. Moments of the filtered longitudinal structure functions versus separation. (a) LES
(lines) and filtered DNS data at LF = 0.79 (symbols). (b) LES (lines) and filtered DNS data at
LF = 0.59. Symbols correspond to different moments, �, p = 2; �, p = 3; �, p = 4; �, p =5;
�, p = 6. The relative position of the filter scale and the shear scale LS = 0.72 is given by the
vertical dashed lines. For easier visualization, p = 3 data are multiplied by 10, p =4 by 50,
p = 5 by 200 and p = 6 by a factor 1000.

From the definition, the p.d.f. tails contribute most to the structure functions of
high order. Moments up to p = 6 are shown in figure 10 for the two LES we have
considered. Apparently, when the shear scale is not resolved, the structure functions
at scales nominally unaffected by the filter differ more and more from the filtered
DNS prediction as p is increased, consistently with the discussed missprediction of
the p.d.f. tails. As soon as the shear scale is resolved, the structure functions provided
by the LES approach the corresponding filtered DNS data in the whole range of
resolved scales. In other words, the condition LF <LS must be satisfied to achieve
the proper intermittency in shear turbulence.

6. Final remarks
A major issue in turbulence theory concerns the development of subgrid stress

models able to achieve a successful simulation of the energy-containing scales of a
given flow. However, success is to a large extent a subjective concept related to the
goals one has in mind for the simulation. In this paper, we decided to investigate on
the conditions under which certain significant features of the large-scale statistics of a
turbulent shear flow are reproduced by a specific LES model – in the present case the
ADM . We stress that no exhaustive investigation of other approaches was attempted,
nonetheless the procedure we present can be easily adapted to other subgrid closures.

Different features have been addressed, ranging from single-point objects – e.g. the
turbulent shear stress – to a scale energy balance able to assess the performance
of the model in capturing the dynamics of the energy-producing scales. We also
dealt with higher-order statistics, to understand whether a properly designed LES
could reproduce the increase of intermittency which is found in the large scales of
shear-dominated flows.

What we have learned was in a sense unexpected. Taking for granted that the low-
order statistics may be captured well by a properly designed LES, we expected that
the accuracy was bound to deteriorate when dealing with higher-order observables
and with the intermittent features of the field. In fact, we discovered that, as soon
as the energy-producing scales of the flow are resolved by the LES filter, all the
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observables we managed to evaluate were accurately reproduced by the simulation,
even the subtle intermittency-increasing effect in high-shear conditions.

Our conclusions are based on the a posteriori comparison between LES predictions
and DNS data. It is clear that the Reynolds number we used in our tests could
not exceed those amenable to DNS, i.e. in the range of small to moderate values.
Nonetheless we are confident that our conclusions can be extended to substantially
larger values. In fact, experimental data acquired with hot wires in a nominally
homogeneous shear flow confirm that the dynamics of the large scales is described
well by our LES (Casciola et al. 2005).

In the present paper, we have dealt with shear flows away from boundaries. In fact,
in a very thin region close to solid walls the matter becomes more complex. Since
the shear scale shrinks as the boundary is approached (Pope 2000), our requirement
of filter scales smaller than LS there implies a resolution comparable to a DNS.
This is, in fact, a well-established procedure for LES of wall-bounded flows (Baggett
et al. 1997). Once it is accomplished, our present results predict an almost perfect
agreement with filtered DNS even for fine properties of the field such as intermittency.
Clearly, in practical applications, the computational demand may become too strong,
calling for the use of wall models see e.g. (Cabot & Moin 1999; Piomelli & Balaras
2000). Though extremely important in the industrial context, the adoption of these
closures cannot guarantee to match the strict requirements discussed above. Our aim
here was to determine the criteria for the preservation of the statistical properties in
the LES for shear-dominated conditions. A simulation tool able to address strong
shear flows in a range of Reynolds numbers considerably extended with respect to
DNS may prove of great value. In fact, it allows us to address, central aspects of the
physics of turbulence, such as the failure to recover isotropy at small scales or the
shear-induced alteration of the scaling laws thus providing new rational insight for
the development of appropriate closures (Casciola et al. 2005).

We thank the staff of the compunting center of Rome CASPUR where the numerical
calculations were done on the IBM System p5 575.

Appendix. Details on the filtering procedure
In this Appendix, we give more details on the explicit filtering procedure. The

numerical solution for the homogeneous shear flow is based on the transformation
of variables

ξ1 = x1 − U (x2)t ξ2 = x2 ξ3 = x3 τ = t

(Townsend 1956; Rogallo 1981), which maps a fixed box with periodic boundary
conditions in computational space into a flow domain in physical space. Given the
time-dependence of the transformation, the flow domain becomes distorted like a
sheared deck of cards according to the inverse transformation

x1 = ξ1 + U (ξ2)τ x2 = ξ2 x3 = ξ3 t = τ.

Owing to periodicity in computational space, any field such that

φ(ξ1, ξ2, ξ3) = φ(ξ1 + Λ1, ξ2 + Λ2, ξ3 + Λ3)

is mapped in physical space to a field which features the property

φ(x1 − U (x2)t, x2, x3) = φ(x1 − U (x2)t + Λ1, x2 + Λ2, x3 + Λ3),
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i.e. it will still be periodic both in x3 and x1 for any t , but aperiodic in x2 unless special
conditions are fulfilled. Periodicity in x2 cannot be achieved for a generic mean profile
U (x2). It occurs, however, for linear mean profiles of the form U (x2) = Sx2, where
it takes place only at time instants that are multiple of the main period T = Λ1/

(SΛ2).
The x1 periodicity can be exploited to obtain the solution in a fixed Cartesian

domain in physical space, by shifting the phases of the Fourier transforms in direction
1 by an amount which depends on time and linearly on ξ2. Starting from the discrete
Fourier transform φ̂(r1, r2, r3) of the field in computational space, where r1, r2, r3

(−N1/2/3 � r1/2/3 � N1/2/3/2 − 1) number the discrete modes in the three directions, the
inverse transform gives the field in computational space as

φ(ξ1, ξ2, ξ3, t) =
∑

r1,r2,r3

φ̂(r1, r2, r3, t) exp

(
j

(
2π

Λ1

r1ξ1 +
2π

Λ2

r2ξ2 +
2π

Λ3

r3ξ3

)
.

Introducing Townsend’s map we find

φ(x1, x2, x3, t) =
∑

r1,r2,r3

φ̂(r1, r2, r3, t) exp

(
−j

2π

Λ1

r1Sx2t exp

(
j

(
2π

Λ1

r1x1+
2π

Λ2

r2x2+
2π

Λ3

r3x3

)
,

an expression that can be used for the evaluation in physical space. In particular,
it allows us to reconstruct the field φ at any time in a fixed reference
Cartesian box. All we need is the phase shift of the computational-space discrete
transforms,

φ̂s(r1, r2, r3, t) = φ̂(r1, r2, r3, t) exp

(
−j

2π

Λ1

r1S∆2r2t

)
,

where ∆2 is the grid spacing in direction 2. This simple rule is able to
generate by inverse Fourier transform the field in the unskewed reference grid. By
introducing the nodal indices of the Cartesian grid – x1 = l1∆1, x2 = l2∆2, x3 = l3∆3,
(l1/2/3 = 1, . . . , N1/2/3) – the discrete field reads

φ(l1, l2, l3, l) =
∑

r1,r2,r3

φ̂s(r1, r2, r3, t) exp

(
j

(
2π

N1

r1l1 +
2π

N2

r2l2 +
2π

N3

r3l3

)
.

We will address the above phase shifting as a re-meshing procedure applied in Fourier
space. As it is clear from the definition, the final field will be aperiodic in x2 (see e.g.
((Gualtieri et al. 2002) and references therein for more details).

After having recalled a few preliminary technicalities, let us move to the crucial issue
of filtering. In physical space, the LES filter kernel G(x1, x2, x3|x1

′, x ′
2, x

′
3) has compact

support. It is built as the Cartesian product of one-dimensional filters invariant under
translations – i.e. G = g(x1 − x ′

1)g(x2 − x ′
2)g(x3 − x ′

3) – with cutoff length scale LF

identical in all three directions and uniform in space. The simplest way to apply
filtering is to operate on the Cartesian grid. The coarse-grained field φ is obtained by
convolution of the filter G with the fine-grained field φ,

φ(x1, x2, x3) =

∫
G(x1 − x ′

1, x2 − x ′
2, x3 − x ′

3) φ(x ′
1, x

′
2, x

′
3) dx ′

1 dx ′
2 dx ′

3.
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In numerics we deal with discrete signals, so that the discrete filter becomes G = g(l1 −
l′
1)g(l2 − l′

2)g(l3 − l′
3) and convolution sums replace convolution integrals,

φ(l1, l2, l3) =
∑
l′
1,l

′
2,l

′
3

g(l1 − l′
1)g(l2 − l′

2)g(l3 − l′
3) φ(l′

1, l
′
2, l

′
3)

=
∑

l′′
1 ,l′′

2 ,l′′
3

g(l′′
1 )g(l′′

2 )g(l′′
3 ) φ(l1 + l′′

1 , l2 + l′′
2 , l3 + l′′

3 ).

As already stated, the discrete field is periodic in directions 1 and 3. The convolution
theorem allows us less to replace the l′′

1 and l′′
3 sums by products of the discrete Fourier

transforms followed by a Fourier inverse transformation. Concerning direction 2, the
lack of periodicity forces us to work in physical space. In fact, at each time step, by
using the re-meshing procedure, the velocity field in the physical unskewed grid is
reconstructed and the filter is applied in the direction of the mean velocity gradient
with explicit use of the respective convolution sum. Finally, the filtered field is mapped
back into computational space.

The filters used in our simulations have been built according to Vasilyev, Lund &
Moin (1998), where all the details may be found. Here we simply give the technical
specifications which identify our filters. The general prescription calls for the
following properties of the one-dimensional filter kernel g in terms of its Fourier
transform expressed as a function of the dimensionless wavenumber ω = k∆, with
∆ the grid spacing: ĝ(0) = 1, ĝ(π) = 0, Mkg = 0 k =1, . . . , 3, (Mk denote the kth

moment of the filter), dĝ/dω|π = 0 and the dimensionless cutoff wavenumber ωF is
imposed by |ĝ(ωF )| = 1/2. In directions 1 and 3, with the same grid spacing ∆1 = ∆3,
ωF = 2π/3 and the filter is the same. Given the different grid spacing ∆2 = ∆1/3/2, in
direction 2 we have selected ωF = π/3, in order to have the same cutoff length-scale
LF =2π/kF = 2π∆/ωF in all three spatial directions.
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